38 research outputs found

    Network Topology Invariant Stability Certificates for DC Microgrids with Arbitrary Load Dynamics

    Full text link
    DC microgrids are prone to small-signal instabilities due to the presence of tightly regulated loads. This paper develops a decentralized stability certificate which is capable of certifying the small-signal stability of an islanded DC network containing such loads. Utilizing a novel homotopy approach, the proposed standards ensure that no system eigenmodes are able to cross into the unstable right half plane for a continuous range of controller gain levels. The resulting "standards" can be applied to variety of grid components which meet the specified, but non-unique, criteria. These standards thus take a step towards offering plug-and-play operability of DC microgrids. The proposed theorems are explicitly illustrated and numerically validated on multiple DC microgrid test-cases containing both buck and boost converter dynamics

    Co-limitation towards lower latitudes shapes global forest diversity gradients

    Get PDF
    The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Bidirectional Series Resonant DC/AC Converter for Energy Storage Systems

    No full text

    Self-Balancing Supercapacitor Energy Storage System Based on a Modular Multilevel Converter

    No full text
    Energy Storage Systems (ESS) are an attractive solution in environments with a high amount of renewable energy sources, as they can improve the power quality in such places and if required, can extend the integration of more renewable sources of energy. If a large amount of power is needed, then supercapacitors are viable energy storage devices due to their specific power, allowing response times that are in the range of milliseconds to seconds. This paper details the design of an ESS that is based on a modular multilevel converter (MMC) with bidirectional power flow, which reduces the number of cascaded stages and allows the supercapacitors SCs to be connected to the grid to perform high-power transfers. A traditional ESS has four main stages or subsystems: the energy storage device, the balancing system, and the DC/DC and DC/AC converters. The proposed ESS can perform all of those functions in a single circuit by adopting an MMC topology, as each submodule (SM) can self-balance during energy injection or grid absorption. This article analyses the structure in both power flow directions and in the control loops and presents a prototype that is used to validate the design

    Self-Balancing Supercapacitor Energy Storage System Based on a Modular Multilevel Converter

    No full text
    Energy Storage Systems (ESS) are an attractive solution in environments with a high amount of renewable energy sources, as they can improve the power quality in such places and if required, can extend the integration of more renewable sources of energy. If a large amount of power is needed, then supercapacitors are viable energy storage devices due to their specific power, allowing response times that are in the range of milliseconds to seconds. This paper details the design of an ESS that is based on a modular multilevel converter (MMC) with bidirectional power flow, which reduces the number of cascaded stages and allows the supercapacitors SCs to be connected to the grid to perform high-power transfers. A traditional ESS has four main stages or subsystems: the energy storage device, the balancing system, and the DC/DC and DC/AC converters. The proposed ESS can perform all of those functions in a single circuit by adopting an MMC topology, as each submodule (SM) can self-balance during energy injection or grid absorption. This article analyses the structure in both power flow directions and in the control loops and presents a prototype that is used to validate the design
    corecore